‘_ SGS-THOMSON
YI® MICROELECTRONICS APPLICATION NOTE

BANKSWITCH AND GNU C
EXAMPLE

by Thierry Crespo and Marc Liochon

INTRODUCTION

Some ST9 devices offer the possibility of accessing up to 2x8 Mbytes of external
memory by means of a technique known as "Bank Switching”, which uses 32 Kbyte
memory blocks selected through port 2. This port register defines the bank number
for external memory. All 8 bits of this register may be used for bank switching, alter-
natively the low nibble may be used to address memory and the high nibble may be
used as application I/O.

This application note provides an example of how the bank switching mechanism
may be handled, and of how it may be run on an ST905x emulator, using the GNU C
Toolchain and the WGDB9 Windows GNU Debugger.

In the first part, it is assumed that all 8 bits of the bankswitch register are used for
bank switching (normal mode).

An example of bank switching in nibble mode is also provided.

ANB843/1295 1/60

TABLE OF CONTENTS

INTRODUCTION ... ot e e e e e e e e e e e e e 1
1 THE BANKSWITCH MECHANISM e e e e 4
1.1 ACCESSING THE STATIC BANK e e e 5
1.2 ACCESSING THE DYNAMIC BANKS e e 6
1.3 MAPPING CODEINDYNAMICBANKS e 6
2USING THE BANKSWITCHWITHGNU C i e i 7
2.1 BANKSWITCH MANAGEMENT IN C e 7
2.2 COMPILING ANDLINKING THEEXAMPLE 10
2.3 USING ASCRIPT FILE e e e i 10
2.4 DEBUGGING THE APPLICATION e e e e e 12
2.4.1 Hardware.gdb 12
2.4.2 APPlLU L e 15
243 Appligdb .. 15
3HARWARE CONSIDERATIONS e e e e 17
4 DESCRIPTION OF THE APPLICATION e e e e 18
4.1 DEFINING MEMORY MAPPING WITH THESCRIPTFILE 19
4.1.1 First mapping: .data section with .bss section in data space 20

4.1.2 Second mapping: .data section in program space, copied at startup in data

space 24
5SETTING UP THE EMULATORWITHWGBDY i, 27
5.1 THEHARDWARE.GDBFILE e 27
5.2 THEPAGE.GDB FILE i e i 29
5.3 THEMEMORY TESTBOARD i e e e e e 29
6 APPLICATION FILE LISTINGS e e e e e e e 31
6.1 THE PAGE.CFILE: e e e e i 31
6.2 THE PAGEO.CFILE: e e e 32
6.3 THE PAGEL.CFILE: e e e e 33
6.4 THE INIT. ASMFILE: e e e 35
6.4.1 The CRTQ.asmfile: e e 36
6.5 THE STATIC .SFILE: e e e e 39
6.6 THE MAKEFILE: e e 39
6.7 THE PAGE.SCR SCRIPTFILE (FORMAPPING 1)o it ... 41
6.8 THE PAGE.SCR SCRIPTFILE (FOR MAPPING 2)t 43
= Ly SS5THOMSON

TABLE OF CONTENTS

7 NIBBLE MODE APPLICATIONS . . oo e e e e 45
7.1 INTRODUCTION ..ttt e e e e e e e e 45
7.2 DEFINING NEW STUB FUNCTIONSo i e s 45
7.3 MAIN DIFFERENCES WITH RESPECT TONORMALMODE47
7.4 THE NIBBLE MODE APPLICATION EXAMPLE o, .. 47

7.4.1 Module list e e 48
7.4.2 Thepage.cfile 48
7.4.3 ThepageO.cfile 51
7.4.4 Thepagel.cfile 52
7.45 Theinitasmfile 55
7.4.6 Themystatic.file 57
7.4.7 The hardware.gdbfile 58
7.4.8 Thepage.gdbfile 59

N7 SGS-THOMSON 3/60
Y, HICROELECTRONICS

BANKSWITCH AND GNU C EXAMPLE

1 THE BANKSWITCH MECHANISM

The ST9, being a 16-bit microcontroler, is normally limited to 16-bit data and address-
es. A special feature has thus been implemented in order to be able to access up to
2x8 Mbytes of extended memory (which is equivalent to a 24-bit address), while still
using 16-bit addresses. Memory is mapped as 32Kbyte banks:

— 1x32Kbyte static bank for program space

— 1x32Kbyte static bank for data space

— 256x32Kbyte dynamic banks for program space

— 256x32Kbyte memory banks for data space.

This 24-bit addressing scheme is implemented by outputting the 8 most significant
bits of the address on the port 2 register, and the 16 least significant bits on the nor-
mal address ports.

Figure 1. Bankswitch mapping

BS PSR=0 BS PSR=1 BS PSR=2 BS_ PSR =255
FFFFh .
dynamic | dynamic | dynamic dynamic
A15 =1 bank 0 bank 1 bank 2 bank 255
32K 32K 32K 32K
8000h
7FFFh
static
A15 =0 bank
30K Program Space
0000h
BS_PSR = xx
BS_DSR=0 BS_DSR=1 BS_DSR=2 BS_DSR =255
FFFFh
dynamic dynamic dynamic dynamic
A15 =1 bank 0 bank 1 bank 2 bank 255
32K 32K 32K 32K
8000h
7FFFh
static
A15 =0 bank
32K Data Space
0000h
BS_DSR = xx

4/60

‘ SGS-THOMSON
Y, HICROELECTRONICS

BANKSWITCH AND GNU C EXAMPLE

When bankswitching is used:

— P2DR = R226 (port 2 data register) contains the 8 most significant adress bits for
data space; this register is also named BS_DSR (BankSwitch Data Space Register).

— R227 (port 2 program register) contains the 8 most significant adress bits for pro-
gram space, this register is also named BS_PSR (BankSwitch Program Space Reg-
ister).

Then if data space is selected, BS_DSR will be output as A23-A16, and, if program

space is selected, BS_PSR will be output as A23-A16.

A23--Al6 A15--A8 A7--A0
Data Space Port 2 = R226 Port 1 Port0
Program Space Port 2 = R227 Port 1 Port0

1.1 Accessing the static bank

The static bank, from 0000h to 7FFFh, is determined by A15 = 0. When A15 = 0 the
high address (A23-A16) is not output. Thus, whatever the bankswitch register value,
the access will be between addresses 7FFFh and 0000h in the static bank.

It is then obvious that calls to this static bank will always be achieved without having
to change the high order address bits.

Taking the following example:

Dynamic bank X

void funcX(){

l;u ncstatic();

Static bank

main({

fu ncX();

void funcstatic(f]

}

A call from code located in dynamic bank 2 (or any dynamic bank) to code located in
the static bank, can then be achieved without paying any particular attention to the
bankswitch registers.

N7 SGS-THOMSON 5/60
Y, HICROELECTRONICS

BANKSWITCH AND GNU C EXAMPLE

Care should be taken, however not to change the bankswitch register (R227 =
BS_ PSR) before returning to the dynamic bank, since in this case the return address
could be to the wrong dynamic bank.

1.2 Accessing the dynamic banks

Access to a dynamic bank is determined by A15 =1. When Al15 =1, the high address
(A23-A16) is output from the port 2 bankswitch register and the bank is selected ac-
cording to the contents of this register.

Lets consider the following example:

A23-Al6 A15-A0
Al15=0 05h 70AAh Static bank
Al5=1 05h FOAAh Dynamic bank 5

This example shows that, if A15 goes from low to high, the static bank is no longer ac-
cessed, and a dynamic bank, defined by the value of the port 2 register (A23-A16) is
then addressed.

Thus, if code in the static bank makes a call to code in a dynamic bank, the banks-
witch register for the dynamic bank needs to be set prior to the jump.

If code in a dynamic bank makes a call to code in another dynamic bank, changing
the bankswitch register will automatically change the addressed bank and the call will
not be possible. Thus, the only way to make the call is to save the current bankswitch
register value in the static bank (which is always accessible from any other bank),
jump to the static bank, set the new bank, and then make the call to the code in the
other dynamic bank. A return from the call must also be implemented in the same
way.

1.3 Mapping code in dynamic banks

6/60

In order to achieve gains in speed and code size, access to the dynamic banks will be
coded in 16 bits only, allowing faster access and shorter opcodes. The only price to
be paid for this gain is that the user must change the high order address (A23-A16) in
software (by writing to the port 2 register).

To implement efficient code, the programmer must consider that by minimising the
number of jumps or calls between dynamic banks he will maximise code efficiency.
An efficient way to manage this is by organising the code in a dynamic bank in such
a way that calls are keep internal to the bank as far as possible. Functions which are
most frequently used should be mapped in the static bank, so that no change is re-
quired on the high order address bits.

‘ SGS-THOMSON
Y, HICROELECTRONICS

BANKSWITCH AND GNU C EXAMPLE

2 USING THE BANKSWITCH WITH GNU C
This chapter describes how to use the bankswitch feature with GNU C.

In the following description, we will refer to a call performed from one bank to another
as a "far call”.

2.1 Bankswitch management in C

In C, the previously described operations are totally transparent to the user, since the
compiler manages far calls automatically. The compiler generates the code required
for handling the bankswitch registers.

It is, however, necessary to issue directives to the compiler, to instruct itthat far calls
will be processed.

A very short example will now be shown to explain how functions mapped in different
banks should be declared and used, and what the compiler does.

The program sequence is as follows:

1) enter the main procedure (static bank)

2) inside main, call funcO (call from the static bank to a dynamic bank)

3) inside funcO, call funcl (call from a dynamic bank to another dynamic bank)

Given the following files:

bank0.c bankl.c main.c
#pragma far (funcO) #pragma far (funcl) extern void funcO();
extern void funci();
void funcO void funcl void main

funcl(); O asm(”n0|(o)”)? funcO();o{
Where:

— bankO.c is a portion of C code mapped in dynamic bank 0,
— bankl.c is a portion of C code mapped in dynamic bank 1,
— main.c is is a portion of C code mapped in the static bank.

"#pragma far ” is the directive which instructs the compiler that a function will be
mapped in a dynamic bank.

When the compiler finds such a directive, it generates a small function called a stub
function, always mapped in the static bank, which will be used to manage the far
calls. This stub function is stored in a file called _static_.s , automatically generated
by the compiler, but which needs to be compiled and linked with the application by the
user.

N7 SGS-THOMSON 7/60
Y, HICROELECTRONICS

BANKSWITCH AND GNU C EXAMPLE

The _static_.s file contains the macros to manage calls.

Compilation and linking are described below.

The following assembly files will be generated:

bank0.s9

f$funcO:

far

ushw rrl2

dw rr12,RR238
call funcl

L1:

ldw RR238,rr12
popw rrl2

JX __ret far

bank1.s9

f$funcl:
far
ushw rrl2
dw rr12,RR238
nop

1

ldw RR238,rr12
popw rrl2

JX __ret_far

main.s9

main:

ushw rrl2

dw rr12,RR238
I_i:all funcO

ldw RR238,rr12
popw rr12
ret

static.s9

__ret far:
pop R227
ret

funcO:
push R227
Id R227 #pffunco
jx f$funco

funcl:
push R227
Id R227 #p$fefuncl
jx f$funcl

As you can see from this example, the main program calls func0, which is mapped in
dynamic bank 0, but the call is redirected automatically by the compiler to a different
funcO in the static bank, which will save the current bank number, load the new bank
number where funcO actually resides into the bankswitch register, and then jump to
the real func0O, whose name has been changed to f$funcO . This new funcO function is
generated automatically by the compiler and is stored in a file called _static_.s . This

is known as a stub function.

Note that the return of the functions is no longer aret, but a jump to ___ret_far, which
is the macro used to restore the previously saved bank number, before returning to
the proper bank. This macro is written in the _static_.s file generated by the compiler.
It simply executes pop R227 and issues a ret instruction to exit the function and re-

store the context.

Thus, for each function defined with the #pragma far directive, the compiler will gen-
erate such a stub function, which automatically manages calls between dynamic

banks.

The same process appears here when funcl is called from funcO: the call is first di-
rected to the static bank, where the current bank number is saved, then the new bank

number is set and a jump to the function in the new bank is performed.

Each function mapped in a dynamic bank, and which can potentially be called from

another bank, must be declared using the #pragma far directive.

8/60

7]

MICROELECTRONIGS

BANKSWITCH AND GNU C EXAMPLE

Note: if a function is mapped in a dynamic bank but is only used internally within the
bank (no call to this function from outside this bank), the function need not be de-
clared using the #pragma far directive. No stub function will therefore be generated,
with consequent speed and space benefits.

Considering only the example of a call between 2 functions mapped in different dy-
namic banks, the procedure to be followed may be described as follows:

Dynamics Banks

f$funCO <- Th|S |S fUﬂCO f$funcl
<- normal code . <- normal code
call funcl <- call to funcl

<- normal code .
| ret far

|_ret_far <-use __ret_far for ret
Static Bank
funcl: <- Stub function defined in _static_.s
I%USRh22R722$?f sfuncl <- Save current bank (hee bank 0)
ix f$func,:2 u <- Load the bank where funcl resides (bank1l))
<- Jump to funcl in the dynamic bank
| ret far:
pop R227 <- Return macro to restore the proper bank number
ret <- R227 is restored from the stack
<- A normal ret is made to restore the context

In brief : The only thing that needs to be done by the programmer is to use the #prag-
ma far directive, and to link the _static_.s file with the application. Normally no atten-
tion needs to be paid to far function management by the compiler.

The programmer should remember that each time a #pragma far directive is found,
the compiler will generate a stub function in the static bank, which requires 11 bytes
of memory. It follows, therefore, that the program should be designed so as to keep
calls between dynamic banks to a minimum. To put this into proportion, even if 1000
functions have been declared using the #pragma far directive, only 11,000 bytes will
be reserved for the stub functions, which amounts to no more than a third of the static
bank size.

Speed and code size are significantly optimised, compared to a linear memory where
24-bit addresses are required. The only price to be paid is represented by 11 bytes for
each function declared using the #pragma far directive.

N7 SGS-THOMSON 9/60
Y, HICROELECTRONICS

BANKSWITCH AND GNU C EXAMPLE

2.2 Compiling and linking the example

These files are compiled with:

GCC9 -c bank0.c -0 bank0.0 <- The compiler will automatically
generate a _static_.s file

GCC9 -c bankl.c -0 bankl.c <- to manage far calls.

GCC9 -c main.c -0 main.o <- It is then necessary to compile and
link this file.

GCC9 -c _static_.s -0 _static_.0 <- compile the _static_.s file

The application is then linked using the appli.scr script file (compulsory for bank
switching):

GCC9 -m -T appli.scr _static .0 bank0.0 bank1l.0 main.o

The script file is necessary to provide proper mapping for the linker. In this example,
we want to map main.c in the static page (this is compulsory), bankO.c in dynamic
bank 0 and bank1.c in dynamic bank 1.

Warning : Be sure to compile and link the _static_.asm file generated by the compiler.
Do notinsert code into this file, as it may be overwritten during compilation.

With GNU C it is necessary to map all the contents of a file into one specific bank, or
several files into the same bank. It is impossible to split the contents of a file among
several banks.

2.3 Using a script file

10/60

A script file is the memory mapping description file. The linker uses this file to link the
application.

Remember that a script file is compulsory for bankswitching.

The script file is structured as follows:

OUTPUT_FORMAT("a.out- st9”) <- Standard ST9 format
OUTPUT_ARCH(st9)
INPUT(_static_.0 main.o bank0.0 bankl.0)
<- list here the application object
files
OUTPUT (appli.u)<- indicate the executable

MEMORY {
text : ORIGIN = p:0000, LENGTH = 32K
<- text is the code for main.c (static
bank)
data : ORIGIN = d:0000, LENGTH = 32K
<- data is the data space static bank
progsp0 : ORIGIN = p:00:8000, LENGTH = 32K
<- progsp0: code of bankO.c (dyn.
bankO0)

‘ SGS-THOMSON
Y, HICROELECTRONICS

BANKSWITCH AND GNU C EXAMPLE

progspl : ORIGIN = p:01:8000, LENGTH = 32K
<- progspl: code of bankl.c (dyn.

bank1)
}
LINKED_OBJECT_HAS BANKS = 1; <- this line is compulsory with banks-
witch
<- it tells the debugger to use the
bankswitch
SECTIONS { <- define here your sections
progsp0.bk9 : { <- define here that the .text (code)
of bank0.c will be
bankO0.o(.text) <- mapped in progsp0. Progsp0 will go
into progsp0.bk9
{> progsp0 <- progsp0.bk9 is loaded in the bank O
by WGDB9.
progspl.bk9 : { <- define here that the .text (code)
of bankl.c will be
bank1.o(.text) <- mapped in progspl
{> progspl <- define the stack size
_stack_size = DEFINED(_stack_size) ? _stack size : 256;
_user_stack_size = DEFINED(_user_stack_size) ?_user_stack_size : 256;
.data <- define the .data section in data
memory space "data”
_data_start = ; <- for all files
*(.data)
_data_end =
} >data
dext @ { <- define the .text section in program
memory "text”
_text_start =
*(.text)
_etext = .;
DO_OPTION_J; <- to make the copy of initial values
from program to
_text end = <- data space at startup
} >text
.bss : {
_bss_start = ; <- define the .bss section
*(.bss COMMON)
_ebss =
_bss end =

_stack_start = DEFINED(_stack_start) ?
_stack_start :

E SGS-THOMSON

11/60

MICROELECTRONIGS

BANKSWITCH AND GNU C EXAMPLE

_stack_end = _stack start + _stack_size;
_user_stack start = DEFINED(user_stack_start) ?
_user_stack_start : _stack end;
_user_stack_end = _user_stack_start + _user_stack_size;
} >data

}
Note here that the text in bold shows the names that are completely defined by the
user.

Linkage will create 4 files:

— progsp0.bk9 contains the executable to be loaded in dynamic memory bank O
— progspl.bk9, contains the executable to be loaded in dynamic memory bank 1
— appli.u, contains the executable code needed by the debugger

— appli.bl9, is a command file needed by the debugger to load progsp0 and progspl,
when loading the application in the debug phase.

2.4 Debugging the application

A debug session with WGDB9 using the bankswitch, needs 3 main files:

— Hardware.gdb

— Appli.u

— Appli.gdb

These 3 files are loaded concecutively when loading the application under the
WGDB9 GNU Debugger.

2.4.1 Hardware.gdb

12/60

Harware.gdb is the command file needed by WGDBS9 to provide the emulator setup.
When loading the application executable file (appli.u) at the beginning of a debug
session, hardware.gdb is the first file automatically loaded and executed before load-
ing the executable (appli.u), in order to configurate the emulator.

Warning : If no hardware.gdb file is found in the application directory, the debugger
will set the default configuration for the emulator, which in our case does not suit the
bankswitch application.

It will then be necessary to create a new hardware.gdb file, which must be stored in
the application directory.

The hardware.gdb file wich follows is used to debug this example: it should be noticed
that this file is totally application dependent. In particular, if external memory is used,
it may be necessary to add commands to set the memory extension card properly. In
our case we use a memory test board, which needs to be configured before the de-
bug session. These commands are set in the hardware.gdb file given below.

E SGS-THOMSON

MICROELECTRONIGS

BANKSWITCH AND GNU C EXAMPLE

Depending on the type of emulator used (either HDS, or ST9xxx new generation), the
commands passed to the emulator will differ. To allow both to be used, a special com-
mand, which is always valid, will allow the debugger to recognize which emulator is
being configured. This command is:

—"IFTARGET SDBST9" for the HDS emulator
—"IFTARGET SDB9xxx" for the ST9xxx emulator

The configuration for both emulator types is given below:
First case: the HDS emulator is used

#******************** kkkkkkkkkkkkkkkkkkkkkkkkkhkkkk
#If the ST9 Emulator is an HDS model, the debugger
#will automatically use the following target SDBST9:

set general ST9 parameters

sdb set clock 24<- set CPU clock to 24MHz

Very important if you use only external memory

sdb set cpu romless <- simulate romless device,
<- because we use the application
<- memory only,

M This will give a warning when loading the hardware.gdb file, this
is normal M

set general emulator parameters

sdb set P6 address <- use non-multiplexed mode
sdb set dm on <- program/data enable

sdb set wpmf on <- protect program space

sdb set nemf on <- protect from wrong memory

<- addressing

Set the bankswitch mode disable even if you use it

The banks are entirely set under the GDB9 layer

sdb set bswmode disable <- bankswitch is managed by GDB9
<- and not by SDBST9
<- so it needs to be desabled

enable the low nibble of port 2
sdb xport 4 1<- this is the command to tell the
<- emulator that the port2 low
<- nibble is used for bankswitch,
<- this is equivalent to BSL_EN1 =
<-1 on the device
enable the high nibble of port 2
<- this is the command to tell the
sdb xport 5 1 <- emulator that the port2 high
<- nibble is used for bankswitch,
<- this is equivalent to BSH_EN1 =
<- 1 on the device

N7 SGS-THOMSON 13/60
Y, HICROELECTRONICS

BANKSWITCH AND GNU C EXAMPLE

14/60

set ST90R91 mapping <- use only external memory
sdb map 0 7fff swe <- on the test board

sdb map 8000 ffff uwe

sdb map /0 /7fff swe

sdb map /8000 /ffff uwe

Don't forget the RESET to validate the status of
modifications realised above
sdb reset <- very important

Set the memory test board to P/D on P5.3
<- particular to our memory
<- extension board
Set segment 08 to 6Fh <- we write 2 segments (registers)
sdb sr OxE3 0x08 <- to select the right P/D pin
sdb sm 0x8000 Ox6F
Set segment 09 to EBh
sdb sr OxE3 0x09
sdb sm 0x8000 OxEB
Set the return bank to 00
sdb sr OxE3 0x00

set the ST9 P/D signal on P5.3
<- set P5.3 as alternate function to
set R234=3<<2 <- use it as P/D
set R244=R244|(1<<3)
set R245=R245]|(1<<3)
set R246=R246&(~(1<<3))

endiftarget
#end iftarget SDBST9

#******************** kkkkkkkkkkkkkkkk

Second case: The ST9xxx emulator is used

#******************** kkkkkkkkkkkkkkkhkkkkkkkkkkkkkk

#If ST9 Emulator is an ST9xxx model then the debugger
#will automatically use the following target SDBIXXX:

iftarget SDBI9XXX
bankswitch on
pd_signal used
map p:0 OX7FFF sw
map p:1:0x8000 OXFFFF sr
map p:0:0x8000 OxFFFF sr

map d:0 OX7FFF sw

‘ SGS-THOMSON
Y, HICROELECTRONICS

BANKSWITCH AND GNU C EXAMPLE

map d:0:0x8000 OxFFFF sw
map d:1:0x8000 OXFFFF sw

endiftarget
#end iftarget SDB9XXX

#******************** kkkkkkkkkkkkkkkk

2.4.2 Appli.u

Appli.u is the executable file created following successfull linkage; it is loaded directly
after hardware.gdb and contains the code mapped in the static bank (program and
data), but not the code mapped into the dynamic banks. The code mapped into the
dynamic banks will be loaded afterwards, with the appli.gdb file.

2.4.3 Appli.gdb

Appli.gdb is a command file specific to the application, it is loaded after appli.u (the
executable), and consequently after hardware.gdb.

When using the bankswitch, this file is compulsory if code or data needs to be
mapped in dynamic banks.

The main purpose of this file is to configure the debugger for a debug session with
special application settings.

When using the bankswitch, this file is also used to load the code into the memory
banks. This is done by making a source of the appli.bl9 file, which downloads the
code into the external memory banks.

As the executable has already been loaded, itis then possible to use arguments spe-
cific to the application, known to the debugger.

The very simplest minimal appli.gdb file is:

load bank modules (generated by script file)
If you edit this file appli.bl9, you will see it
contains instructions to download all files with
extension .bk9 created by the linker.

source appli.bl9 <- the only command given to WGDBY9, this load a
<- command file, executed by the debugger:

appli.bl9 # This file was automatically generated by the linker.
========= # DO NOT EDIT.
dibank progsp0.bk9 <- download progsp0.bk9 file
dlbank progspl.bk9 <- download progspl.bk9 file

N7 SGS-THOMSON 15/60
Y, HICROELECTRONICS

BANKSWITCH AND GNU C EXAMPLE

16/60

As the appli.gdb file is loaded after the appli.u file, the labels and parameters particu-
lar to the application are known by the debugger and they can now be used for appli-
cation settings.

For example, if we want to reset all the . bss section to 0, it is possible to insert the fol-
lowing in appli.gdb:
Reset bank bss because will not be reset by c-start
set R226=0 <- set the data bank register to 0
<- and fill the memory with 00
sdb fm /$_bss _bankO_start /$ bss bankO _end 00

set R226=1 <- set the data bank register to 0
<- and fill the memory with 00
sdb fm /$_bss _bankl_start /$ bss bankl end 00

‘ SGS-THOMSON
Y, HICROELECTRONICS

BANKSWITCH AND GNU C EXAMPLE

3 HARWARE CONSIDERATIONS

If we now consider the device itself, when bankswitching is used A15 will select
whether the common bank O (static bank, from 0000h to 7FFFh) is addressed, or if
one of the other 256 banks (dynamic banks, from 8000h to FFFFh) is addressed.

The 8 bits of the Bankswitch port (port2) are used as the A23-A16 address bits. This
port takes different values on reset, depending on the micro:

— BS Port = FEh whenever A15 ="0" on the ST90R50

— BS Port = OEh whenever A15 ="0" on the ST90R51/91

The P/D pin, programmed as an alternate function, is used to select either Program or
Data space.

BS_PSR = R227 will be used as the program dynamic bank if program space is se-
lected.

BS DSR = P2DR = R226 will be used as the data dynamic bank if data space is se-
lected.

The bankswitch port logic allows either all 8 bits of port 2 to be used to address exter-
nal memory, or the low nibble for addressing external memory and the high nibble for
application 1/O purposes. This choice is made by latching the state of the BSH_ENL1
and BSL_EN1 input pins. The reset value of the port will also be modified according
to the BSH_EN1 and BSL_ENL1 values, given by the following table:

. BS Port reset value
BS Port Nibble
BSH_EN1| BSL_EN1 R50 R51/91

High Low Prog Data Prog Data
0 0 /10 /0 FFh FFh FFh FFh
0 1 /0 BS FEh FEh FEh FDh
1 0 /O BS FEh FEh FEh FDh
1 1 BS BS FEh FEh OEh 0Dh

On the emulator, BSH_EN1 and BSL_EN1 may be set by software, using the follow-
ing commands:
- set xport 4 1 <=> BSL_EN1 = 1lorset xport 4 0 <=> BSL EN1 = 0
- set xport 5 1 <=> BSH_EN1 = lorset xport 5 0 <=> BSH_EN1 = 0
For example, if normal bankswitch mode is selected (all 8 bits of port 2 are used as
addresses), the following commands will be in hardware.gdb:

- set xport 4 1

- set xport 5 1
More detailed information can be found on pages 24/178-26/178 of the ST90R5X Da-
tabook .

N7 SGS-THOMSON 17/60
Y, HICROELECTRONICS

BANKSWITCH AND GNU C EXAMPLE

4 DESCRIPTION OF THE APPLICATION

This example shows a simplified application using 2x2 external memory banks (2
data banks and 2 program banks). Its purpose is to illustrate the bankswitch mecha-
nism, as well as various memory configurations which can help the user to customise
memory mapping.

In this application, the 8 bits of the bankswitch port are used as addresses.

The application uses 3 different C files mapped in 2 different banks. Each file de-
clares variables and functions which may call functions in other banks.

Module List::

— page.c: the main program, mapped in the static bank

— page0.c: a section of code mapped in dynamic bank 0

— pagel.c: a section of code mapped in dynamic bank 1

—init.asm : an assembly init file, to initialise the ST9 port configuration
— _static_.s : the automatically generated file for far call managment

The other important files used for the application are:

— page.scr: the script file

— makefile : the makefile to compile and link the application with the GMAKE utility
— hardware.gdb : the emulator configuration file needed by the debugger

— page.gdb : the application configuration file needed by the debugger

The executable file:
— page.u

The more important generated files:

— page.bl9 : the command file to download the code and data into the dynamic banks
. progsp0.bk9 : the object code of page0.c to be loaded into bank 0 (program space)
. progspl.bk9 : the object code of pagel.c to be loaded into bank 1 (program space)
. datasp0.bk9 : the data of page0.c to be loaded into bank 0 (data space)
. dataspl.bk9 : the data of pagel.c to be loaded into bank 1 (data space)

— page.map : the map file generated by the linker

18/60 N7 SGS-THOMSON
Y, HICROELECTRONICS

BANKSWITCH AND GNU C EXAMPLE

‘ pageO.c|h- compiler—‘—> assembler —™= linker —®= page.u

pagel.c

7 ~ page.scr

crt9.asm

static.asm

init.asm

4.1 Defining memory mapping with the script file

The script file is used to define the mapping for the application: the program section
(.text), the data section (.data or .bss), and the stack parameters.

It can also be used to define the input files (object files used in the application) and
the startup file. This can however be defined in the makefile.

Two different mappings will be described. The only difference between the two cases
is in the script file, which is why for each case the special script file will be described
more in depth.

More detailed information can be found on pages 20/40-24/40 of the LD9 manual.

N7 SGS-THOMSON 19/60
Y, HICROELECTRONICS

BANKSWITCH AND GNU C EXAMPLE

4.1.1 First mapping: .data section with .bss section in data space

This example maps the code section of each memory bank (static and dynamic) into
the corresponding bank in program space. The variables, initialised or not, and the
constants (.data and .bss sections) are mapped into the corresponding banks in data
space. This is summarised as follows:

CodeN
Codd1l (teXt)
Code0 (-text ageN ¢
Dynamic Banks (text) gelL.c S
page0.c
Static Bank Code
(.text)
page.c
Program Space

DataN
| Datal (.bss)
Data0 + (data)
(.bss)
Dynamic Banks + (data) pagdi.c pageN.c
page0.c
Data
Static Bank Sd?.tg%)
page.c
Data Space

20/60

The application script file page.scr will be described below:
OUTPUT_FORMAT("a.out- st9”)

OUTPUT_ARCH(st9)

Place all your object files here

INPUT(_static_.0 page.o page0.0 pagel.o init.0)

‘ SGS-THOMSON
Y, HICROELECTRONICS

BANKSWITCH AND GNU C EXAMPLE

Select a startup file. This startup file is not the default, as it does not make a copy of
the .data section from program space to data space at startup.

STARTUP(crtx9.0) <- as the default mapping is not used
here, we use a startup file
<- which does not make a copy of the
.data section from program
<- space to data space at startup

Select the name you chose for the application output file.
OUTPUT(page.u)

Map here your application in terms of hardware resources.

The text, data, progsp0,... are labels used to define the memory mapping.
MEMORY {
text : ORIGIN = p:0000, LENGTH = 32K
<- static prog. memory
data : ORIGIN = d:0000, LENGTH = 32K
<- static data memory

progsp0 : ORIGIN = p:00:8000, LENGTH = 32K

<- dyn. progr. memorry, bank 0
dataspO : ORIGIN = d:00:8000, LENGTH = 32K

<- dyn. data memory, bank 0
progspl : ORIGIN = p:01:8000, LENGTH = 32K

<- dyn. progr. memory, bank 1
dataspl : ORIGIN = d:01:8000, LENGTH = 32K

<- dyn. data memory bank 1
}
p is for program memory, d is for data memory
p:01:8000 -> bank 1, in program space, starting at address 8000h

This line declares that banks are used. It is compulsory if bankswitch is used.
LINKED_OBJECT_HAS BANKS = 1,

Define here all your sections, this will map each obiject file in the specific bank using
the labels defined above. This is why each file must be within a specific bank.

Warning: A file of more than 32K must be split into several smaller files.

The linker will generate as many files, with extension .bk9, as the number of sections
which you have defined.

As you can see below, the .text section is stored in program space, and the .bss and
.data sections are stored in data space.
SECTIONS {
progsp0.bk9 : { <- this put the .text section of
page0.c into progsp0

_text_bankO_start = .

page0.o(.text)

text bankO_end = .

N7 SGS-THOMSON 21/60
Y, HICROELECTRONICS

BANKSWITCH AND GNU C EXAMPLE

} > progsp0

progspl.bk9 : { <- this put the .text section of
pagel.c into progspl
_text_bankl start =
pagel.o(.text)
_text_bankl end = .

} > progspl
datasp0.bk9 : { <- this maps the .bss and .data sec-
tions of pageO.c
_bss_bankO_start = _; <- into dataspO
page0.0(.bss .data)
_bss_bankO_end =
} > dataspO
datasp1.bk9 : { <- this maps the .bss and .data sec-
tions of pagel.c
_bss_bankl start = _; <- into dataspl

pagel.o(.bss .data)
_bss bankl end =
} > dataspl

The _data_bankO_end,... arguments can be directly used in your application. In this
particular case, they remain unused and could therefore have been omitted.

The default stack size is set to 256. It can also be modified by linking options. The
_stack_size argument can be used directly as a variable name in the program.

_stack_size = DEFINED(_stack_size) ? _stack size : 256;
_user_stack size = DEFINED(user_stack size)? _user_stack size : 256;

This part is common to many applications, it defines the static sections.

text
_text_start = .
*(.text)
_etext = .;
_text end =
}>text
.bss : {
_bss_start = ;
*(.bss .data COMMON)
_ebss =
_bss end =
_stack_start = DEFINED(_stack_start) ?
_stack_start : .
_stack_end = _stack start + _stack_size;
_user_stack _start = DEFINED(_user_stack_start) ?
_user_stack_start : _stack end;
_user_stack _end = _user_stack start + _user_stack size;

22/60 7 SGS-THOMSON
Y, HICROELECTRONICS

BANKSWITCH AND GNU C EXAMPLE

} >data

}

Warning : As it is not the default, the application must be linked using the -nol option.

The resulting mapping can be observed from page.map file to check the memory al-
location.

Refer to the LD9 manual for further information.

N7 SGS-THOMSON 23/60
Y, HICROELECTRONICS

BANKSWITCH AND GNU C EXAMPLE

4.1.2 Second mapping: .data section in program space, copied at startup in data space

This example maps the code section of each dynamic memory bank into the corre-
sponding bank in program space. For these dynamic banks, the initialised variables
and the constants (.data section) are mapped into the static bank in data space.

This is summarised as follows:

CodeN
Codal (.text)
Code0 (text a0eN.c
Dynamic Banks (ctext pagell.c -
page0.c
Static Bank Code
(.text)
page.c
Program Space

DataN
| Datal (.bss)
Data0 (.bss) + (data)
(.bss) + (data) N
Dynamic Banks + (data) pageN.c
pagel.c
page0.c
Data
Static Bank &b(sé’;ta)
page.c
Data Space

24/60

The script file used for this mapping is described below:
OUTPUT_FORMAT("a.out- st9”)

OUTPUT_ARCH(st9)

INPUT(_static_.0 page.o page0.0 pagel.o init.0)

STARTUP(crt9.0) <- this is the default startup file
OUTPUT(page.u)

‘ SGS-THOMSON
Y, HICROELECTRONICS

BANKSWITCH AND GNU C EXAMPLE

MEMORY {
text : ORIGIN = p:0000, LENGTH = 32K
data : ORIGIN = d:0000, LENGTH = 32K

progsp0 : ORIGIN = p:00:8000, LENGTH = 32K
dataspO : ORIGIN = d:00:8000, LENGTH = 32K
progspl : ORIGIN = p:01:8000, LENGTH = 32K
dataspl : ORIGIN = d:01:8000, LENGTH = 32K
}
LINKED_OBJECT_HAS BANKS = 1; <- remember this line is compulsory
SECTIONS {
progsp0.bk9 : { <- .text section of page0.c in progsp0
_text_bankO_start = .
page0.o(.text)
_text_bankO_end = ;
} > progspO
progspl.bk9 : { <- .text section of pagel.c in progspl
_text_bankl start = .
pagel.o(.text)
_text bankl end = .
} > progspl
datasp0.bk9 : { <- .bss section of page0.c in dataspO
_bss_bankO_start = _;
page0.0(.bss)
_bss_bankO_end =
} > dataspO
datasp1.bk9 : { <- .bss section of pagel.c in dataspl
_bss _bankl start = .;
pagel.o(.bss)
_bss _bankl end =
} > dataspl
_stack_size = DEFINED(_stack_size) ? _stack size : 256;
_user_stack size = DEFINED(user_stack size)? _user_stack size : 256;
text
_text_start = .;
*(.text)
_text end =
DO_OPTION_I; <- specify that copy of .data section
from program
<- space to data space at startup will
appen
_etext = .;

N7 SGS-THOMSON 25/60
Y, HICROELECTRONICS

BANKSWITCH AND GNU C EXAMPLE

} >text
.bss : { <- data will contain all .data sec-
tions and .bss of
<- page.c
_bss_start = ;
*(.bss .data COMMON)
_ebss =
_bss end =

_stack_start = DEFINED(_ stack_start) ?
_stack_start : .
_stack_end = _stack start + _stack_size;
_user_stack start = DEFINED(user_stack_start) ?
_user_stack_start : _stack end;
_user_stack_end = _user_stack_start + _user_stack_size;
}>data

}

26/60 o7 S$GS-THOMSON

MICROELECTRONIGS

BANKSWITCH AND GNU C EXAMPLE

5 SETTING UP THE EMULATOR WITH WGBD9

5.1 The

In order to perform the emulator setup, some information must first be passed to
WGDB9. This information is mostly contained in two files, hardware.gdb and
page.gdb (same name as the application).

The order in which these files are loaded is very important: the harwdare.gdb file must
be loaded first, followed by page.u and then by the page.gdb file.

More detailed information can be found in the WGDB9 manual.

Note: General emulator settings should be contained in the hardware.gdb file, while
specific emulator settings should be contained in the application.gdb file. As the ap-
plication.gdb file is loaded after the application.u file, it is possible to use the applica-
tion’s context (variables, labels, etc.).

These files are very important and an error at this point could be fatal or hide prob-
lems during debug ,even if there is no error message.

Hardware.gdb file
#******************** kkkkkkkkkkkkkkkkkkkkkkkhkkkkkk

#If ST9 Emulator is an HDS model then the debugger
#will automatically use the following target SDBST9:

iftarget SDBST9
set general ST9 parameters
sdb set clock 24
sdb set cpu romless
set general emulator parameters
sdb set P6 address
sdb set dm on
sdb set wpmf off
sdb set nemf on
sdb set bswmode disable
#sdb set adctrl extended

#Set the port 2 as bankswitch port (8 bits)
sdb xport 4 1
sdb xport 5 1

set ST90R91 mapping
sdb map 0 7fff uwe
sdb map 8000 ffff uwe
sdb map /0 /7fff uwe
sdb map /8000 /ffff uwe

reset
sdb reset

N7 SGS-THOMSON 27/60
Y, HICROELECTRONICS

BANKSWITCH AND GNU C EXAMPLE

set port 5 bit 3 as alternate function PD
#set R234=3<<2

#set R244=0x08

#set R245=0x08

#set R246=0x00

sdb sr ea 3<<2

sdb sr f4 08

sdb sr f5 08

sdb sr f6 00

validate banks on test board
#set R227=0x08

#set (char *)*0x8000=0x6f

#set R227=0x09

#set (char *)*0x8000=0xeb

sdb sr e3 08

sdb sm 0x8000 Ox6f

sdb sr e3 09

sdb sm 0x8000 Oxeb

Set the bank 0 for default bank
set RR226=0

endiftarget
#end iftarget SDBST9

#******************** kkkkkkkkkkkkkkkk

#******************** kkkkkkkkkkkkkkkhkkkkkkkkkkkkkk

#If ST9 Emulator is an ST9xxx model then the debugger
#will automatically use the following target SDB9XXX:

iftarget SDBI9XXX
bankswitch on

pd_signal used

map p:0 OX7FFF sw

map p:1:0x8000 OXFFFF sr
map p:0:0x8000 OxFFFF sr
map d:0 OxX7FFF sw

map d:0:0x8000 OXFFFF sw
map d:1:0x8000 OxFFFF sw

endiftarget
#end Iftarget DB9XXX#*************************** *kkk

28/60 N7 SGS-THOMSON
Y, HICROELECTRONICS

BANKSWITCH AND GNU C EXAMPLE

5.2 The page.gdb file

It is necessary to define a file with the same name as the application name, with a
.gdb extension (here page.gdb). This file is used to load the application settings.

In our case we use the minimum settings, which correspond to:

load bank modules (generated by script file)
If you edit this file page.bl9, you will see it
contains instructions to download all files with
extension .bk9 created by the linker.

source page.bl9

5.3 The memory test board

The memory test board used can be specific to each application. In this application
we used the STOOR5X TESTBOARD MB087.

This test board contains 2x128 Kbyte memory blocs for program space and 2x128
Kbytes memory blocs for data space. Two segments, virtually placed in program
space bank 8 and 9, are used to select various options on the board. In our applica-
tion the P/D pin is selected on port 5 bit 3, by setting segment 8 to 6Fh and segment
9 to EBh (this enables multiplexers to select P5.3).

This is done in the hardware.gdb file, when loading the page.u application using
WGDB9.

N7 SGS-THOMSON 29/60
Y, HICROELECTRONICS

BANKSWITCH AND GNU C EXAMPLE

Figure 2. ST90R5x MB087 Memory Test Board

0=~0ad

v1vd

————

—O00—0

—r— QO 0

———00

—— 000

L=6lY
L=8lYv
L=LLY
0=91LV
0=S1LlV¥

O »NvE

0=6LlV
0=8LlV
0=LLY¥
0=9LV¥
L=GLV¥

L XNYd

~— OO0

ha 0]

MEE

AP9

WYHS

e

p[0)
=~(Qd
L=61lY
WY L=8LYV
g90dd ey
0=91Y¥
0=SlY¥
{ 9Ly % 2Ly/ + 9LY/ & £LY } & GLY = /LHOY
g1v/ = SV = 9Lyay
dYMS ON ONY YINVG
L1LHOV<LLY DLHOV<ILY AMDWIW Hv3INIT 4I
N2E WYHS
ZL¥ # GLY = /lHO¥ «AQ
L1¥UY<Z IV WOHdI NO dVMS ON 41 WOoHd3
0=61V
] 0=8LY
0 O=LLY
0 0=9LV¥
0 m L=SLV
0
L L
] L JNYY T
O L
It 4
o |0
L |O
— o |l €
0 1L
L
L
0 0 14
Ly
L
L S
L
L 9
0 WYHS
0 |L {—— B2061S
o
L
8 ¢ ~1393483
{——— ~293¥s0

MICROELECTRONIGS

"_I. SGS-THOMSON

30/60

BANKSWITCH AND GNU C EXAMPLE

6 APPLICATION FILE LISTINGS

6.1 The page.c file:

/****************** FAAAKA AR AAAAAAAAAA KA AAA XA XA A A *****/

I* File: PAGE.C */

/* Program bank location: STATIC BANK */

/* Data bank location: STATIC BANK */

I* */
/* Comments: This is the main program, it defines global variables */

I* and call functions in dynamic banks */

* FAXAAAAAAAXAAAAAK AdAAAAAAAXAAAAA XA A XA AA XA ***********/

#include<bank.h>
#include "global.h” /* Include global variables *

extern void FuncO(); /* External functions used in main */
extern void Funcl();

void Func();
static char say it[] = "Static page”;
void main(void) {
Func(); /* Call to functions in static page normally */

value = 0 ; [* Global variables can be accessed normally */
/* as they are in static page */

Func0(); /* Call FuncO in bank 0 */
/* The bank switch is manage automatically */
[* for program space only, as FuncO was */
/* declared as #pragma far (funcO) only */

value = (int) R_DATA BANK;
/* Set value to data bank number, just to */
[* visualise it */

Funci(); /* Call Funcl in bank 1 */
/* The bank switch is manage automatically */
[* for program space and data space, as */
/* FuncO was declared as */
[* #pragma far (funcO) only *

value = (int) R_PROG_BANK;
/* Set value to program bank number, just to */
[* visualise it */

N7 SGS-THOMSON 31/60
Y, HICROELECTRONICS

BANKSWITCH AND GNU C EXAMPLE

value = RR_BANK;
/* Set value to bank register (RR226), just to */
[* visualise it */

/****************** KA A KA KA A KA A XA A KA XA KA A AKX AKX AKX *****/

/*

/* Define any function you like in static bank and use it normally */

/*

/****************** KA AR A KA A KA A XA A KA XA KA AL KA KA A AKX *****/

void Func() { /* Include here the code you need */
/* 1t will be located in static page */

asm("ldw RR20, RR22");

6.2 The pageO0.c file:

32/60

/****************** FAAAKA AR AAAAAAAAAA KA AAA XA XA AK *****/

I* File: PAGEO.C

/* Program bank location: DYNAMIC BANK 0

[* Data bank location: DYNAMIC BANK 0

/*

/* Comments: This file shows how to declare a function in the */

I* dynamic page 0. It also makes a call to Funcl */
I* located in dynamic page 1

/****************** FAAAA A AAXAA XA AAXAAAAAAAXAAX *****/

#include<bank.h>

char var0; /* These variables will be located in the */

char bankO_variable; /* dynamic page O */
const char cst0 = 11,

char say_itO[] = "THIS IS BANK 0%

extern void Funcl();
extern int global_var; /* Global variable in static page */

#pragma far(FuncO) /* Here you declare FuncO as far */
/* to tell the compiler FuncO will be */
/* called from other banks *
void FuncO() {
asm("nop”);
var0 = 12;
Func(); /* Call a function in static page normally */
var0 = global_var; /* It is possible to access and modify */
[* variables in static and dynamic pages */
Funci(); /* Call a function indynamic page normally */
bankQ_variable = OxFF;
h

E SGS-THOMSON

*/

*/

MICROELECTRONIGS

BANKSWITCH AND GNU C EXAMPLE

6.3 The pagel.cfile:

/****************** FAAAA AR AAAAA A AAXAAAAAAA XA AX *****/

I* File: PAGE1.C *

[* Program bank location: DYNAMIC BANK 1 */

/* Data bank location: DYNAMIC BANK 1 */

I* */
/* Comments: This file shows how to declare a far function taking */

I* also consideration of the data bank register */

I* */

/****************** FAAAA AR AAAAA A AAXAAAAAAA XA AX *****/

#include<bank.h>

char bankl_variable;
char save_bank;

static char say itl[]] = "THIS IS BANK 17
[* Define here Funcl as far */

#pragma far(Funcl,p$bankl_variab le)

* The bank where bankl variable */
* was mapped is also manage */
/* A call to Funcl will then */

* set the prog and data bank */
registers */

~ ~

~ ~
*

/* You can also define: #pragma far(Funcl,1) (where 1 is the data
bank number) */

EXTERN_IN_BANK(bankO _ variable);
/* Use this definition to make */
EXTERN_IN_BANK(bank1_ variable);

/* GNU recognise the p$name */
/* symbol as the data bank */
/* BANK_OF(name) will then give*/
/* the data bank number */

extern char bankQ_variable;

void Funcl_local();

void Funcl() {

bankl variable = 0x12;

/* Do anything you need with the */

~
*

variables defined in bank 1 */

/* If you want do use variables */
* in another bank, first : */
* Change the data bank to the */

~ ~

N7 SGS-THOMSON 33/60
Y, HICROELECTRONICS

BANKSWITCH AND GNU C EXAMPLE

34/60

/* right one */
R_DATA_BANK = BANK_OF(bank0_variabl e);
/* This will set the data bank to */
/* one where bankO_variable is */
* located

~

bank0 variable = OxAA,

~
*

Perform the operation you want*/
* in this particular bank */

~

R_DATA_BANK = BANK_OF(bankl_variabl e);
/* Restore the data bank register */
/* to the actual bank */

bankl variable = 0x56;
/* Do anything you need with the */
[* variables defined in bank 1 */

Funcl_local(); /* Use local function declared */
/¥ in the same bank if you need */

/¥ end Funcl */

/****************** AR AA XA KA AA XA KA AAAAA XA XA AA *****/
/*
[* Define any local function you like and use it normally */
/-k

/****************** FAAAA A KAXAA XA AAXAAAAAAA XA AX *****/

void Funcl_local(void){

~

/* Do not declare this function *

/* as far, because it is used */

/* only in bankl */
bankl variable = 0;

}

*/

*/

‘ SGS-THOMSON
Y, HICROELECTRONICS

BANKSWITCH AND GNU C EXAMPLE

6.4 The init.asm file:

; This file sets the port configuration for bankswitch
; and the memory test board

.include ".\include.st9\st905x.inc”
text

#init PO,P1,P6,P2.0,P5.3 for bank switching : ¢2=0,c1=1,c0=1

1
skkkkkkkkkkkkkkkkkkkk kkkkkkkkkkkkkkhkkkkkkkkkkkkkkkkkkk -
1 1

;% EUNCTION: init_bank_hardware Fkkkkkk

skkkkkkkkkkkkkkkkkkkk khkkkkhkkkkkkkkkhkhhhhhhhhhkkxkxxxkx -
1 1

init_bank_hardware::

#P0CO0,1,2 = R240,241,242 Page 2

; Alternate function, push-pull, TTL

spp #POC_PG ; set port 0 page
Id POCOR #0xff
Id POC1R, #0xff
Id POC2R,#0x00

#P1CO0,1,2 = R244,245,246 Page 2

; Alternate function, push-pull, TTL

spp #P1C_PG ; set port 1 page
Id P1COR,#0xff
Id P1C1R,#0xff
Id P1C2R,#0x00

#P5CO0,1,2 = R244,245,246 Page 3

; Alternate function, push-pull, TTL, only for bit 3

spp #P5C_PG ; set port 5 page
or P5COR,#8

or P5C1R,#8

and P5C2R,#(~8)

#P6C0,1,2 = R248,249,250 Page 3

; Alternate function, push-pull, TTL

N7 SGS-THOMSON 35/60
Y, HICROELECTRONICS

BANKSWITCH AND GNU C EXAMPLE

spp #P6C_PG ; set port 6 page
Id P6COR,#0xff
Id P6C1R,#0xff
Id P6C2R,#0x00

; Set P/D on P5.3 on memory test board
; <=>
; Set segment 08 and 09 in program space

spm ; set program memory space

Id BS_PSR,#08h Janice; load bank register with 08 to select 8th bank

Id 8000,#06Fh ; load 6F in this bank (just a write only regis-
ter)

Id BS_DSR,#09h ; load bank register with 09 to select 9th bank

Id 8000,#0EBh ; load EB in this bank (just a write only regis-
ter)

clr BS_PSR ; reset the program space bankswitch register

clr BS DSR ; reset the data space bankswitch register

sdm; reset the data memory space

jx end_init ; end init_bank hardware

6.4.1 The CRT9.asm file:

.include "c:\gnu9\include.st9\st905x.inc”

INIT_CIC = 8fh ; CIC = IT disabled + Nested Mode + CPL = 7
K_INITCLOCKMODE = 20h ; R235 = both stack in memory + clock divided by 2
K_INITWCR = 40h ; R252 = zero wait state + watchdog enabled

text
;;.org 0

.word __Reset

.blkb 50 ; reserve room for the interrupt vectors

text

;Reset routine

; WARNING : it is important to set rrl2 to something NOT zero.
; This is because for the debugger a frame pointer null means

; the function has no parent frame (ie cannot go up). This is OK
; for the main routine, but not for routines called by main.

; If -fomit-frame-pointer is used for compiling, rrl12 could not

; be set in main, nor in functions called by main...

; Furthermore, it seems a good idea to initialize the current frame

; pointer to the current stack pointer.

36/60 N7 SGS-THOMSON
Y, HICROELECTRONICS

BANKSWITCH AND GNU C EXAMPLE

.global __ Reset

__Reset:
spp #0 ; page O to access WCR
Id R252,#K_INITWCR ; WCR = zero wait state
Id R235,#K_INITCLOCKMODE ; init CLOCKMODE (both stack in memory)
Id R230,#INIT_CIC ; CIC for our program
srp #0 ; set register pointer to 0
sdm ; set data memory
ldw RR238,# stack end ; setup stack

ldw RR236,# user_stack end ; setup user stack

X init_bank_hardware ; Initialize P/D and ports
end_init::

call _K_InitDataBss ; init data & bss section

ei ; enable interrupts

ldw rrl12,RR238 ; make sure rrl2 is NOT zero

call main ;

halt

;Function to initialize the data, bss and stack sections.
;input : none.
; Data space is selected.

; output @ none.
;o rr0,rr2,rrd,rr6 are trashed.
; Data space is selected.

; Note : LD9 creates the following symbols :

; _data_start points to start of run time data area,
; _data_end points to end of run time data area,
;_bss_start points to start of run time bss area,

; _bss_end points to end of run time bss area,

; _text start points to start of text segment,
;_text_end points to end of text segment.

; _stack_start points to start of stack segment,
;_stack_end points to end of stack segment.

; Note : option | must be used with LD9 in order to get
; the initialize data information at the end of the text section
(in ROM).

; In that case '_text end - (_data_end - _data start)’ gives

; the start address of the initialized data information in
; the text segment.

o7 S$GS-THOMSON 37/60

MICROELECTRONIGS

BANKSWITCH AND GNU C EXAMPLE

; Note : be careful to save the return address before clearing the
; BSS section,because the kernel stack belongs to the BSS
; section.

.global __K_InitDataBss
__K_InitDataBss:
popwrré ; save return address in rr6

; Init data area

ldw rrO,# _data_start ; start of run-time data area

ldw rr4#_data_end ; end of run time data area

subw rr4,rr0 ; rr4 = length of initialize data

jrz no_data ; if empty

ldw rr2,#_text_end ; end ROMed data area

subw rr2,rr4 ; start of ROMed data area
init_data:

lddp (rrO)+,(rr2)+ ; init data section

dwjnz rr4,init_data ;

no_data:

; Init bss section

xor r4,r4 ; r4 = 0.
ldw rr0,# bss_start ; start of run-time bss area
ldw rr2,#_bss_end ; end of run time bss area
subw rr2,rr0 ; 2 = length of bss area
jrz no_bss ; if bss is empty
init_bss:
Id (rrO)+,r4 ; clear all bss section (Data space)
dwjnz rr2,init_bss ;

no_hss:

; Init stack section (not really necessary, but cleaner)

; (here r4 = 0)
ldw rr0,#_stack_start ; start of run-time stack area
ldw rr2,#_stack_end ; end of run time stack area
subw rr2,rr0 ; 2 = length of stack area
jrz endinit ; if stack is empty
init_stack:
Id (rrO)+,r4 ; clear all stack section (Data space)

dwjnz rr2,init_stack ;

endinit:
p 6 : return to caller.

38/60 N7 SGS-THOMSON
Y, HICROELECTRONICS

BANKSWITCH AND GNU C EXAMPLE

6.5 The _static_.s file:

; This file is automatically generated by GCC9 - Do not edit.
; Compile this file with 'gcc9 -g'.
.ifc ndf _ ret far

__ret_far::

popR227

ret

.endc

.ifc ndf _ ret xfar
__ret_xfar::

popwRR226

ret

.endc

.ifc ndf __jp_far

.macro __jp_far funcname

funcname::

pushR227

Id R227 #pf'funcname

jx f$'funcname

.endm
.endc
.ifc ndf __jp_xfar

.macro __jp_xfar funcname,dataname

funcname::

pushwRR226

word Oxbfe2 ; ldw RR226,#

.byte dataname

.byte pf'funcname

jx f$'funcname

.endm
.endc
;File pagel.c

__jp_xfar Funcl,p$bankl_variable ; f$Funcl
;File pageO.c

__jp_far FuncO ; f$FuncO

6.6 The makefile:

#******************** kkkkkkkkkkkkkkkhkkk

GNU MAKEFILE

#******************** kkkkkkkkkkkkkkkhkkk

DEFINES :

#**********

IFLAGS = -l.\include

CFLAGS = -c -g -Wa,-alhd -O -fomit-frame-pointer -Wall $(IFLAGS)
ASMFLAGS = -c -g -Wa,-alhd

LDFLAGS = -m -l

N7 SGS-THOMSON 39/60
Y, HICROELECTRONICS

BANKSWITCH AND GNU C EXAMPLE

APPLI = page

Clist SRC = page.c page0.c pagel.c
ASMlist. SRC = crt9.asm init.asm _static_.s

COMMON DEFINES :

#*****************

.SUFFIXES:

SUFFIXES: .c .asm .st9 .s .s9 .0 .scr .u

EXE = ${APPLI}.u

SCRIPT = ${APPLI}.scr

list OBJ = $(subst .c,.0,$(filter %.c,$(Clist_SRC)))
$(subst .asm,.o,$(filter %.asm,$(ASMIlist_SRC))) \
$(subst .st9,.0,$(filter %.st9,$(ASMIist_SRC))) \
$(subst .s,.0,$(filter %.s,$(ASMlist_SRC)))

%.0:%.c

$(CC) $(CFLAGS) $< -0 3@
%.0:%.asm

$(CC) $(ASMFLAGS) $< -0 $@
%.0:%.5st9

$(CC) $(ASMFLAGS) $< -0 $@
%.0:%.s

$(CC) $(ASMFLAGS) $< -0 $@

$(EXE) : $(list_OBJ)
$(LD) $(LDFLAGS) -T $(SCRIPT) -0 $(EXE)

CREATE THE OBJECT FILES :

#******************** Kkkkkk

include makedep

.PHONY:_static_.s
static.o: _static_.s $(Clist_ SRC)

a target to delete all generated file :
#******************** kkkkkkkkkkkkkkkkkkkik
.PHONY:clean
clean:

del *.s

del *.0

del *lI

del *.u

del *.bk9

del *.bl9

40/60 N7 SGS-THOMSON
Y, HICROELECTRONICS

BANKSWITCH AND GNU C EXAMPLE

del *.map
$(CC) -MM 3$(IFLAGS) $(Clist_SRC) >makedep

a target to generate dependencies in makedep file :
if makedep do not exist, or if is not a regular depency file,

use gmake -k dep
#******************** kkkkkkkkkkkkkkkkkkkhkkkkhkhkkkkhkhkkkk kkhkkkk
makedep: $(Clist_SRC)

$(CC) -MM 3$(IFLAGS) $(Clist_SRC) >makedep

6.7 The page.scr script file (for mapping 1)

OUTPUT_FORMAT("a.out- st9”)
OUTPUT_ARCH(st9)

INPUT(_static_.0 page.o page0.0 pagel.o init.0)
STARTUP(crtx9.0)

OUTPUT(page.u)

MEMORY {
text : ORIGIN = p:0000, LENGTH = 32K
data : ORIGIN = d:0000, LENGTH = 32K

progsp0 : ORIGIN = p:00:8000, LENGTH = 32K
dataspO : ORIGIN = d:00:8000, LENGTH = 32K
progspl : ORIGIN = p:01:8000, LENGTH = 32K
dataspl : ORIGIN = d:01:8000, LENGTH = 32K

}
LINKED_OBJECT_HAS_BANKS = 1;

SECTIONS {
progsp0.bk9 : {
_text_bankO_start = .
page0.o(.text)
_text_bankO_end = .;
} > progspO

progspl.bk9 : {
_text_bankl start =
pagel.o(.text)
_text bankl end = .
} > progspl

datasp0.bk9 : {
_bss_bankO_start = _;
page0.0(.bss .data)
_bss_bankO_end =
} > dataspO

datasp1.bk9 : {

‘ SGS-THOMSON
Y, HICROELECTRONICS

41/60

BANKSWITCH AND GNU C EXAMPLE

_bss_bankl start =

pagel.o(.bss .data)

_bss _bankl end =
} > dataspl

_stack_size = DEFINED(_stack_size) ? _stack size : 256;
_user_stack size = DEFINED(user_stack size)? _user_stack size : 256;

.data
_data_start = ;
*(.data)
_data_end .
} >data

dext @ {
_text_start =
*(.text)
_etext = ;
_text end =
} >text

.bss : {

_bss_start =

*(.bss COMMON)

_ebss =

_bss end =

_stack_start = DEFINED(_stack_start) ?
_stack_start :

_stack_end = _stack start + _stack_size;

_user_stack_start = DEFINED(_user_stack_start) ?
_user_stack_start : _stack_end;

_user_stack_end = _user_stack_start + _user_stack_size;

} >data

}

42/60 7 SGS-THOMSON
Y, HICROELECTRONICS

BANKSWITCH AND GNU C EXAMPLE

6.8 The page.scr script file (for mapping 2)

Warning: All .data sections will be mapped in the static page
OUTPUT_FORMAT("a.out- st9”)

OUTPUT_ARCH(st9)

INPUT(_static_.0 page.o page0.0 pagel.o init.0)
STARTUP(crt9.0)

OUTPUT(page.u)

MEMORY {
text : ORIGIN = p:0000, LENGTH = 32K
data : ORIGIN = d:0000, LENGTH = 32K

progsp0 : ORIGIN = p:00:8000, LENGTH = 32K
dataspO : ORIGIN = d:00:8000, LENGTH = 32K
progspl : ORIGIN = p:01:8000, LENGTH = 32K
dataspl : ORIGIN = d:01:8000, LENGTH = 32K

}
LINKED_OBJECT_HAS_BANKS = 1,

SECTIONS {
progsp0.bk9 : {
_text_bankO_start = ;
page0.o(.text)
text bankO_end = .
} > progsp0

progspl.bk9 : {
_text_bankl_start = ;
pagel.o(.text)
text bankl end = ;
} > progspl

datasp0.bk9 : {
_bss_bankO_start = _;
page0.0(.bss)
_bss bank0O _end =
} > dataspO

dataspl.bk9 : {
_bss_bankl start = _;
pagel.o(.bss)
_bss _bankl end =
} > dataspl

_stack_size = DEFINED(_stack_size) ? _stack size : 256;

_user_stack size = DEFINED(_user_stack_size) ? _user_stack_size : 256;

.data
_data_start = ;

N7 SGS-THOMSON 43/60
Y, HICROELECTRONICS

BANKSWITCH AND GNU C EXAMPLE

*(.data)
_data_end g
} >data

dext @ {
_text_start = .;
*(.text)
_etext = .
DO_OPTION_J;
_text end =
} >text

.bss : {

_bss_start = ;
*(.bss COMMON)
_ebss =
_bss end =
_stack_start = DEFINED(_ stack_start) ?
_stack_start : .;
_stack_end = _stack_start + _stack_size;
_user_stack_start = DEFINED(_user_stack_start) ?
_user_stack_start : _stack end;
_user_stack_end = _user_stack start + _user_stack size;

} >data

44/60 7 SGS-THOMSON
Y, HICROELECTRONICS

BANKSWITCH AND GNU C EXAMPLE

7 NIBBLE MODE APPLICATIONS

7.1 Introduction

The nibble mode, is a special feature that can be implemented both on the emulator
and on the device. This feature allows the user to use the high order nibble of port 2
(4 MSB) as I/Os, for application purposes, and the low nibble (4 LSB) of port 2 as ad-
dresses to address 16 dynamic banks for program space and 16 dynamic banks for
data space.

Warning: Some precautions must however be taken by the user when manipulating
port 2, since writing to the low nibble may change the bank number and crash the
program or use the wrong variable contents, if in data space.

A constraint with GNU C exists, in that the whole byte of port 2 is saved before a call
to a function mapped in a dynamic bank, and restored when returning from the func-
tion. This is done by the stub functions. Thus if the high nibble is modified in the func-
tion, its value will be restored to its previous value when returning from the function
and the new value will therefore be lost.

This places a constraint on bankswitch management, since the user must always be
aware of the value of the high nibble.

The following application note gives a solution to this problem, freeing the user from
this problem.

The example provided uses a modified version of the application software used to
demonstrate the bankswitch mecanism.

7.2 Defining new stub functions

First of all, in order to correctly understand the problem concerning the stub functions,
these must first be described.

There are 2 kinds of stub functions, depending on the the #pragma far directive given
to the compiler.

They are represented in table 1.

As can be seen, the bank number, either for program space or data space, is always
saved in its entirety on the stack, and restored when returning from the called func-
tion. Thus it is clear that, if the high nibble is modified during the far function, returning
from this function will restore the high nibble to the saved value.

N7 SGS-THOMSON 45/60
Y, HICROELECTRONICS

BANKSWITCH AND GNU C EXAMPLE

Table 1.

Directive

#pragma far (funcname)

#pragma far (funcname, data-
bank)

Macro used for the call

.macro __jp_far funcname
funcname::
push R227
Id R227, #pf'funcname
jx f$'funcname
.endm

.macro __jp_xfar funcname
funcname::
.word Oxbfe2
.byte dataname
Jbyte pf'funcname
jx f$funcname

.endm
__ret_far:: __ret_xfar::
Return from the call pop R227 pop RR226
ret ret

A solution is to write the new macros in such manner that only the low nibble is saved
before a far call, and of course that only the low nibble will be restored when returning

from the far call.

These new stub functions are described in the following table:

Table 2.

Directive

#pragma far (funcname)

#pragma far (funcname, data-
bank)

Macro used for the call

.macro __jp_far funcname
funcname::
push R227
and R227, #0xFO
or R227 #pf'funcname
jx f$'funcname

.macro __jp_xfar funcname
funcname::
pushw RR226
and R226, #0xFO0
or R226, #dataname
and R227, #0xFO
or R227, #pf’funcname

Return from the call

.endm .
jx f$funcname
.endm
__ret far: __ret xfar:
pop r4 popw rr4

and r4, #0x0F
and R227, #0xF0
or R227,r4

ret

andw rr4, #0x0FO0F
andw RR226, #0xFOFO0
orw RR226, rr4

ret

46/60

E SGS-THOMSON

MICROELECTRONIGS

BANKSWITCH AND GNU C EXAMPLE

Since the compiler automatically generates the _static_.s file, which contains the ex-
panded macro calls, it is not possible to write anything in this file.

A simple solution is to include the _static_.s file at the end of the file containing the
above code. With this solution, since the _static .s code is written in a conditional
compilation manner, using the .ifndef directive, the stub functions will use the macros
defined by the user and not the ones in the _static_.s file.

The user will need to follow the following steps:

— create a file (eg: mystatic.s)

— add the new stub function declarations to this file

—add .include "_static_.s” at the end of the file

— compile and link mystatic.s with the application

A short application will now be described to show that the nibble mode can easily be
implemented by following the above procedure.

7.3 Main differences with respect to normal mode

The use of the bankswitch in nibble mode can be compared to the normal mode, by
considering only the following differences:

On the emulator the only difference compared to the normal mode is to set xport 5 to
0 within the hardware.gdb file.

On the device, this is equivalent to latching BSH_EN1 end BSL_EN1 to 0 and 1 (or
to 1 and 0), respectively.

It is necessary to mask the 4 MSBs of port 2 from WGDB9, this is done within the
page.gdb file by setting:

set bank prog and OxOF

set bank data_and OxOF

7.4 The nibble mode application example

This application is a test program to demonstrate how to create an application using
the bankswitch nible mode and how to test and debug it using the HDS emulator.

The same memory test board is used as for the previous bankswitch application in
normal mode.

This application uses the 4 MSBs of port 2 to switch 4 LEDs on or off, while accessing
different dynamic banks. It will be shown that, if a function mapped in a dynamic bank
modifies the LED status, the return will not change this status.

The following description illustrates the main differences with respect to the normal
mode example.

N7 SGS-THOMSON 47/60
Y, HICROELECTRONICS

BANKSWITCH AND GNU C EXAMPLE

7.4.1 Module list

The source files:

— page.c: the main program, mapped in the static bank

— pageO.c: a part of code mapped in dynamic bank 0

— pagel.c: a part of code mapped in dynamic bank 1

—init.asm : an assembly init file, to initialise the ST9 port configuration

— mystatic.st9: the file defining the macros for the far calls and return. At the end

of this, _static_.s : the automatically generated file for far call
managment is included.

Other important files used for the application (debug):

— page.scr: the script file - not modified -

— makefile : the makefile to compile and link the application - not modified -
— hardware.gdb : the emulator configuration file needed by the debugger

— page.gdb : the application configuration file needed by the debugger

7.4.2 The page.c file

/********************‘********************************* ******/

[* File: PAGE.C */

/* Program bank location: STATIC BANK */

/* Data bank location: STATIC BANK */

I* */
/* Comments: This is the main program, it defines global variables */

I* and call functions in dynamic banks */

I* */

/*** ****************/

include<bank.h>
include "page.h” /* Header file for new types */

void Delay(char); /* Definition of functions */
void Blink_Leds_BS_DSR();

void Set R_DATA_High_Nibble(unsig ned char);

void Set R_DATA_Low_Nibble(unsign ed char);

void Set_R_PROG_High_Nibble(unsig ned char);

extern void FuncO(); / *External functions used in main */
extern typ_struct Funcl();

char say_it[] = "Static bank”;/* You can visualize it with the dump */
int global var;
char value = 12;

typ_struct var_static; [* Declare var_static if type typ_static */

48/60 N7 SGS-THOMSON
Y, HICROELECTRONICS

BANKSWITCH AND GNU C EXAMPLE

/********************‘********************************* *******/

I* MAIN PROCEDURE

/*

[*Comments: */
[*This procedure shows a possible use of the high nibble */

/*of port 2 when using the bankswitch feature */

/*** ****************/

void main(void) {

Blink_Leds_BS_DSR();/* This blinks leds on port2 1/0s */

Func0(); /* Call FuncO in bank 0 */
/* The bankswitch is managed automatically */
[* for program space only, as FuncO was */
[* declared as #pragma far (funcO) only */

value = (int) R_DATA BANK;
[* Set value to data bank number, just to */
[* visualize it */

var_static = Funcl(); /* Call Funcl in bank 1 */
/* The bank switch is managed automatically*/
[* for program space and data space, as */
/* FuncO was declared as */
[* #pragma far (funcl,l) *

Blink_Leds_BS_DSR(); /* This blinks leds on port2 I/Os*/

value = (int) R_PROG_BANK;
[* Set value to program bank number, just to */
[* visualize it */

value = RR_BANK; /* Set value to bank register (RR226), just to */
[* visualize it */

/¥ end MAIN */

/*** ****************/
/*
[*This function sets the high nible of BS DSR to a given value */
/*
/*** ****************/
void Set_R_DATA_High_Nibble(unsig ned char new_value) {
new_value &= OxFO;
R_DATA_BANK &= OxOF;
R_DATA_BANK |= new_value;
}

/*** ****************/

/*

*/

*/

*/

*/

*/

49/60

E SGS-THOMSON

MICROELECTRONIGS

BANKSWITCH AND GNU C EXAMPLE

50/60

[*This function sets the Low nible of BS DSR to a given value */
/*
/*** ****************/
void Set R_DATA_Low_Nibble(unsign ed char new_value) {
new_value &= OxOF;
R_DATA_BANK &= OxFO;
R_DATA_BANK |= new_value;

}

/*** ****************/
/*
[*This function sets the high nible of BS_PSR to a given value */
/*
/*** ****************/
void Set R_PROG_High_Nibble(unsig ned char new_value) {
new_value &= OxFO;
R_PROG_BANK &= OxOF;
R_PROG_BANK |= new_value;
}

/*** ****************/
/*
[*This function is just a simple delay */
/*

/*** ****************/

void Delay(char time){

char i;
for (i=0;i<time;i++);
}
/*** ****************/
[*This function blinks 4 Leds on port2 high nibble *
/*
*Comments: It just set high nibble bits, one after another */

/*** *****************/

void Blink_Leds BS DSR(){
char i;
for (i=0;i<10;i++){

Set_R_DATA_High_Nib ble(0x10); /* port2.4 = 1 */
Delay(100);

Set_R_DATA_High_Nibble(0x20); /* port25 = 1 */
Delay(100);

Set_R_DATA_High_Nibble(0x40); /* port2.6 = 1 */
Delay(100);

Set_R_DATA_High_Nibble(0x80); /* port2.7 = 1 */
Delay(100);

Set R_DATA_High_Nibble(0x00); /* port2 = 0 */

}

}

/*** ****************/

E SGS-THOMSON

*/

*/

*/

*/

*/

*/

MICROELECTRONIGS

BANKSWITCH AND GNU C EXAMPLE

7.4.3 The pageO.c file

/*** ****************/

I* File: PAGEO.C *

/* Program bank location: DYNAMIC BANK O */

/* Data bank location: DYNAMIC BANK 0 */

I* *
/* Comments: This file shows how to declare a function in the */

I* dynamic page 0. It also makes a call to Funcl */

I* located in dynamic page 1 */

/******************** kkkkkkkkkkkkkkkkkkkhkkkkkkkkkkkkkk ******/

#include<bank.h>
#include "page.h”

char varO;/* These variables will be located in the */

char bank0_variable; /* dynamic page O */
const char cst0 = 11;

char say itO[]] = "THIS IS BANK 07

typ_struct varQ_struct; /* Define varO_struct as a type typ_struct*/

extern global_var;

extern typ_struct Funcl();

extern void Blink_Leds_BS_DSR();

extern void Set R_DATA_High_Nibble(unsigned char);
extern void Set R_PROG_High_Nibble(unsigned char);

/******************** kkkkkkkkkkkkkkkkkkkhkkkkkkkkkkkkkk *******/

#pragma far(FuncO) /* Here you declare FuncO as far */

/* to tell the compiler FuncO will be */

[* called from other banks *
/******************** kkkkkkkkkkkkkhkkkkkhkkkkkhkkkkkhkkkkkhk *******/

void FuncO(void) {

asm("nop”);
var0 = 12;

Blink_Leds_BS_DSR();

Set_R_DATA_High_Nibble(0xAA);
Set_ R_PROG_High_Nibble(0xBB);

var0 = global var; [* 1t is possible to access and modify *
[* variables in static and dynamic pages */

Blink_Leds_BS_DSR();

Set_R_DATA_High_Nibble(0xCC);
Set_R_PROG_High_Nibble(0xDD);

N7 SGS-THOMSON 51/60
Y, HICROELECTRONICS

BANKSWITCH AND GNU C EXAMPLE

varQ_struct

= Funcl(); /* Call a function in dynamic page normally*/

Blink_Leds_BS_DSR();

bank0_variable = OxFF;

3

7.4.4 The pagel.cfile

/*** ****************/

52/60

I* File: PAGE1.C *

/* Program bank location: DYNAMIC BANK 1 */

[* Data bank location: DYNAMIC BANK 1 */

I* */
/* Comments: This file shows how to declare a far function taking */

I* also consideration of the data bank register */

I* */

/*** ****************/

#include<bank.h>

#include "page.h”

char bankl_variable;
char save_bank;

char say itl[] = "THIS IS BANK 17"

extern
extern
extern
extern

extern

void
void
void
void

char

Blink_Leds_BS_DSR();/* External functions */
Set_R_DATA_High_Nibble(unsigned char);
Set R_DATA_Low_Nibble(unsigned char);
Set R_PROG_High_Nibble(unsigned char);

bankQ_variable;
/* Define here Funcl as far */

#pragma far(Funcl,p$bankl_variab le)

[* The bank where bankl_variable*/

/* was mapped is also manage *
/* A call to Funcl will then *

[* set the prog and data bank */
[* registers */

/* You can also define: #pragma far(Funcl,1) (where 1 is the data
bank number) */

EXTERN_IN_BANK(bank0_ variable);

/* Use this definition to make */

EXTERN_IN_BANK(bank1_ variable);

I* GNU recognize the p$name */
/* symbol as the data bank */

‘ SGS-THOMSON
Y, HICROELECTRONICS

BANKSWITCH AND GNU C EXAMPLE

/* BANK_OF(name) will then give*/
[* the data bank number */

/* Function declarations */
void Funcl_local();
typ_struct Funcl();

/*** ****************/

I* *
[*Funcl, a test function to show the use of prog and data banks*/

I* *
[*Comments: Return a structure to demonstrate that the stack is */

I* preserved properly */

/*** ****************/

typ_struct Funcl() {
typ_struct var_funcl,;

bankl_variable = 0x12;/* Do anything you need with the */
[* variables defined in bank 1 */

/* If you want do use variables */
/* in another bank, first : */

[* Change the data bank to the */
/* right one */

Blink_Leds_BS_DSR(); /* Just blinks leds on port2 /O */

Set_R_DATA_Low_Nibble(BANK_OF(bank0_varia ble));
[* This will set the data bank to */
/* one where bankO_variable is */
/* located */

bank0_variable = OxAA; [* Perform the operation you want*/
/* in this particular bank *

Set R_DATA_Low_Nibble(BANK_OF(bank1_varia ble));
[* Restore the data bank register */
[* to the actual bank */

bankl_variable = 0x56; /* Do anything you need with the */
[* variables defined in bank 1 */

Funcl_local(); /* Use local function declared *
/* in the same bank if you need */

Blink_Leds_BS_DSR(); /* Blink leds */
Set_R_DATA_High_Nibble(0x55);
[* Set High Nibble of BS DSR to 5*

N7 SGS-THOMSON 53/60
Y, HICROELECTRONICS

BANKSWITCH AND GNU C EXAMPLE

54/60

/* this allows you to test that */

/* return from function, the */

/* value on port 2 is kept */
Set_R_PROG_High_Nibble(0x66);

/* Same thing with BS_PSR */
var_funcl.var_a = bankl variable;

[* Sets the return value */
var_funcl.var_b = 15; /* to any value to show the *

[* stack is properly returned */
return(var_funcl);

/¥ end Funcl */

/*** ****************/
/*
[* Define any local function you like and use it normally */
/*
/*** ****************/
void Funcl_local(void){/* Do not declare this function */
[* as far, because it is used *
/* only in bankl *
bankl variable = 0;

}

E SGS-THOMSON

*

*/

MICROELECTRONIGS

BANKSWITCH AND GNU C EXAMPLE

7.4.5 The init.asm file

; This file sets the port configuration for bankswitch
; and the memory test board

.include ”.\include.st9\st905x. inc”
text

init PO,P1,P6,P2.0,P5.3 for bank switching : ¢2=0,c1=1,c0=1

1
skkkkkkkkkkkkkkkkkkkk kkkkkkkkkkkkkhkkkkkkkkkkkkkhkkkkkk kkkkkkk.
1 1

;% FUNCTION: init_bank_hardware Fkkkkkk

skkkkkkkkkkkkkkkkkkkk khkkkhhhkkkkkkkkkkkhhhhhhhhhhhkkkkkx dhkkxxkx:
1 ’

init_bank_hardware::

#P0CO0,1,2 = R240,241,242 Page 2

; Alternate function, push-pull, TTL
spp #POC_PG; set port 0 page
Id POCOR,#0xff
Id POCI1R,#Oxff
Id POC2R,#0x00

#P1CO0,1,2 = R244,245,246 Page 2

; Alternate function, push-pull, TTL

spp #P1C_PG; set port 1 page
Id P1COR,#0xff
ld P1CI1R,#Oxff
ld P1C2R,#0x00

#P5CO0,1,2 = R244,245,246 Page 3

; Alternate function, push-pull, TTL, only for bit 3
spp #P5C_PG; set port 5 page
or P5COR,#8
or P5C1R,#8
and P5C2R,#(~8)

#P6C0,1,2 = R248,249,250 Page 3

; Alternate function, push-pull, TTL

spp #P6C_PG; set port 6 page

N7 SGS-THOMSON 55/60
Y, HICROELECTRONICS

BANKSWITCH AND GNU C EXAMPLE

56/60

Id P6COR,#0xff
Id P6CI1R,#Oxff
ld P6C2R,#0x00

#P2C0,1,2 = R249,250,251 Page 2

; Alternate function, push-pull, TTL

spp #P2C_PG ; set port O page
Id P2COR,#0x00 ; HIGH NIBBLE is set to
ld P2C1R,#0xf0 ; Output/PP/TTL
ld P2C2R,#0x00 ; Low nibble is set to
; BID/WP/TTL

; Set P/D on P5.3 on memory test board

<=>

; Set segment 08 and 09 in program space

spm ; set program memory space

ld BS_PSR,#08h ; load bank register with 08 to select 8th bank
Id 8000,#06Fh ; load 6F in this bank (just a write only register)
Id BS _DSR,#09h ; load bank register with 09 to select 9th bank
Id 8000,#0EBh ; load EB in this bank (just a write only register)
clr BS_PSR ; reset the program space bankswitch register
clr BS_DSR ; reset the data space bankswitch register

sdm ; reset the data memory space

jx end_init; end init_bank hardware

‘ SGS-THOMSON
Y, HICROELECTRONICS

BANKSWITCH AND GNU C EXAMPLE

7.4.6 The mystatic.file

skkkkkkkkkkkkkkkkkkkk kkkkkkkkkkkkkkhkkkkkkkkkkhkkkkhkkkkk kkkkkkkk
1

: This file contains the stub declaration for the nibble mode

; Note: _static_.s is include at the end of the file

1
skkkkkkkkkkkkkkkkkkkk kkkkkkkkkkhkkkkhkkkkkkkkkkhkkkkhkkkkk kkkkkkkk
1

__ret_far::
pop r4 ;saved value of R227
and r4, #0xOF ; keep only bank nibble
and R227, #0xFO ; raz bank nibble without modifying port nibble
or R227, r4 ; set bank nibble without modifying port nibble
ret

.macro __jp_far funcname
funcname::
push R227 ; save value of R227
and R227, #0xFO ; keep only port nibble of R227
or R227 #pf'funcname
; set bank nibble without modifying port nibble

jx f$funcname ; jump in function in dynamic bank
.endm

__ret_xfar:
popw rr4 ; saved value of RR226
andw rr4, #0xOFOF ; keep only bank nibble
andw RR226, #0xFOFO
; raz bank nibble without modifying port nibble
orw RR226, rr4 ; set bank nibble without modifying port nibble
ret

.macro __jp_xfar funcname,dataname
funcname::
pushw RR226
and R226, #0xFO ; keep only port nibble of R226
or R226, #dataname
; set bank nibble without modifying port nibble
and R227, #0xFO ; keep only port nibble of R227
or R227, #pf'funcname
; set bank nibble without modifying port nibble
jx f$funcname
.endm

.include ”_static_.s”

N7 SGS-THOMSON 57/60
Y, HICROELECTRONICS

BANKSWITCH AND GNU C EXAMPLE

7.4.7 The hardware.gdb file

#******************** kkkkkkkkkkkkkkkhkkkkkkkkkkhkkkk

#If ST9 Emulator is an HDS model then the debugger
#will automatically use the following target SDBSTO:

iftarget SDBST9
set general ST9 parameters
sdb set clock 24
sdb set cpu romless
set general emulator parameters
sdb set P6 address
sdb set dm on
sdb set wpmf off
sdb set nemf on
sdb set bswmode disable

#Set the port 2 as bankswitch port in nibble mode (4 bits)
sdb xport 4 1
sdb xport 5 1

set ST90R91 mapping
sdb map 0 7fff uwe
sdb map 8000 ffff uwe
sdb map /0 /7fff uwe
sdb map /8000 /ffff uwe

reset
sdb reset

set port 5 bit 3 as alternate function PD
sdb sr ea 3<<2

sdb sr f4 08

sdb sr f5 08

sdb sr f6 00

validate banks on test board
sdb sr e3 08

sdb sm 0x8000 Ox6f

sdb sr e3 09

sdb sm 0x8000 Oxeb

Set the bank O for default bank
set RR226=0

endiftarget
#end iftarget SDBST9

#******************** kkkkkkkkkkkkkkkk

#******************** kkkkkkkkkkkkkkkkkkkkkkkkhkhkkkk

#If ST9 Emulator is an ST9xxx model then the debugger

58/60 N7 SGS-THOMSON
Y, HICROELECTRONICS

BANKSWITCH AND GNU C EXAMPLE

#will automatically use the following target SDB9XXX:
iftarget SDBI9XXX

#Set the port 2 as bankswitch port in nibble mode (4 bits)
bankswitch nibble

pd_signal used

map p:0 OX7FFF sw

map p:1:0x8000 OXFFFF sr
map p:0:0x8000 OxFFFF sr

map d:0 OX7FFF sw
map d:0:0x8000 OxXFFFF sw
map d:1:0x8000 OxFFFF sw

endiftarget
#end iftarget SDB9XXX

#******************** kkkkkkkkkkkkkkkk

7.4.8 The page.gdb file

load modules banks
source page.bl9

set internal GDB9 bank number
set bank_prog_and OxOF
set bank _data_and OxOF

N7 SGS-THOMSON 59/60
Y, HICROELECTRONICS

BANKSWITCH AND GNU C EXAMPLE

NOTES:

Software examples included in this note are intended for guidance only.
SGS-THOMSON shall not be held liable for any direct, indirect or consequential dam-
ages with respect to any claims arising from use of such software.

Information furnished is believed to be accurate and reliable. However, SGS-THOMSON Microelectronics assumes no
responsibility for the consequences of use of such information nor for any infringement of patents or other rights of third parties
which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of SGS-
THOMSON Microelectronics. Specification mentioned in this publication are subject to change without notice. This publication
supersedes and replaces all information previously supplied.

SGS-THOMSON Microelectronics products are not authorized for use as critical components in life support devices or systems
without express written approval of SGS-THOM SON Microelectronics.

01995 SGS-THOMSON Microelectronics -Printed in Italy - All Rights Reserved.

SGS-THOMSON Microelectronics GROUP OF COMPANIES
Australia - Brazil - China - France - Germany - Hong Kong - Italy - Japan - Korea - Malaysia - Malta - Morocco - The Netherlands
- Singapore - Spain - Sweden - Switzerland - Taiwan - Thailand - United Kingdom - U.S.A.

60/60 N7 SGS-THOMSON
Y, HICROELECTRONICS

